
“Lean and Efficient Software:
Whole-Program Optimization of Executables”

Project Summary Report #1

(Report Period: 6/30/2014 to 9/30/2014)

Date of Publication: Oct 10, 2014
© GrammaTech, Inc. 2014

 Sponsored by Office of Naval Research (ONR)

Contract No. N00014-14-C-0037
Effective Date of Contract: 06/30/2014

 Technical Monitor: Sukarno Mertoguno (Code: 311)
 Contracting Officer: Casey Ross

Submitted by:

Principal Investigator: Thomas Johnson

531 Esty Street
Ithaca, NY 14850-4201
(607) 273-7340 x. 134

tjohnson@grammatech.com

DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited.

Financial Data Contact:
Krisztina Nagy
T: (607) 273-7340 x.117
F: (607) 273-8752
knagy@grammatech.com

Administrative Contact:
Derek Burrows
T: (607) 273-7340 x.113
F: (607) 273-8752
dburrows@grammatech.com

mailto:tjohnson@grammatech.com

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
10 OCT 2014 2. REPORT TYPE

3. DATES COVERED
 30-06-2014 to 30-09-2014

4. TITLE AND SUBTITLE
Lean and Efficient Software: Whole-Program Optimization of
Executables

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
GrammaTech, Inc,531 Esty Street,Ithaca,NY,14850-4201

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

7

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #1 © GrammaTech, Inc. 2013

1 Financial Summary
Contract Effective Date 06/30/2014
Contract End Date 06/30/2016
Reporting Period 06/30/2014 – 09/30/2014
Total Contract Amount $602,165
Incurred Costs this Period $85,702
Incurred Costs to Date $85,702
Est. Cost to Completion $516,463

2 Project Overview
Background:
Current requirements for critical and embedded infrastructures call for significant increases
in both the performance and the energy efficiency of computer systems. Needed
performance increases cannot be expected to come from Moore’s Law, as the speed of a
single processor core reached a practical limit at ~4GHz; recent performance advances in
microprocessors have come from increasing the number of cores on a single chip. However,
to take advantage of multiple cores, software must be highly parallelizable, which is rarely
the case. Thus, hardware improvements alone will not provide the desired performance
improvements and it is imperative to address software efficiency as well.

Existing software-engineering practices target primarily the productivity of software
developers rather than the efficiency of the resulting software. As a result, modern software
is rarely written entirely from scratch—rather it is assembled from a number of third-party or
“home-grown” components and libraries. These components and libraries are developed to
be generic to facilitate reuse by many different clients. Many components and libraries,
themselves, integrate additional lower-level components and libraries. Many levels of library
interfaces—where some libraries are dynamically linked and some are provided in binary
form only—significantly limit opportunities for whole-program compiler optimization. As a
result, modern software ends up bloated and inefficient. Code bloat slows application
loading, reduces available memory, and makes software less robust and more vulnerable. At
the same time, modular architecture, dynamic loading, and the absence of source code for
commercial third-party components make it hopeless to expect existing tools (compilers and
linkers) to excel at optimizing software at build time.

The opportunity:
Our objective in this project is to substantially improve the performance, size, and robustness
of binary executables by using static and dynamic binary program analysis techniques to
perform whole-program optimization directly on compiled programs: specializing library
subroutines, removing redundant argument checking and interface layers, eliminating dead
code, and improving computational efficiency. In particular, we will apply specialization and
partial evaluation technology, integrating the new technology with the techniques developed
during the previous contract effort. We expect the optimizations to be applied at or

2

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #1 © GrammaTech, Inc. 2013

immediately prior to deployment of software, giving our tool an opportunity to tailor the
optimized software to its target platform. Today, machine-code analysis and binary-rewriting
techniques have reached a sufficient maturity level to make whole-program, machine-code
optimization feasible. Thus, we believe there is now a great opportunity to design tools that
will revolutionize the software development industry.

Work items:

We expect to develop algorithms and heuristics to accomplish the goals stated above. We
will embed our work in a prototype tool that will serve as our experimental and testing
platform. Because “Lean and Efficient Software: Whole-Program Optimization of
Executables” is a rather long title, we will refer to the project as Layer Collapsing and the
prototype tool as Laci (for LAyer Collapsing Infrastructure).

The specific work items for the base contract period are listed below:

1. Investigate specialization opportunities. The contractor will design and implement limit
studies that will help focus the search for fruitful applications of partial evaluation and set
goals for attainable improvements.

2. Transfer UW technology. The contractor will transfer program-specialization or partial-
evaluation technology from the University of Wisconsin and integrate it into the
contractor’s tool chain.

3. Improve and extend UW technology. The contractor will improve the robustness and
scalability of the transferred technology, and complete partially implemented
components and functionality.

4. Improve and extend IR construction and rewriting. The contractor will improve
intermediate-representation construction and rewriting infrastructure as needed to
demonstrate functionality on the primary test subjects.

5. Develop and maintain test infrastructure. The contractor will create an extensive suite
of test applications, and will maintain and extend it as necessary. The contractor will also
implement validation and measurement functionality that will enable tracking the
robustness and benefits of program transformations.

6. Investigate security implications. As time permits, the contractor will study the effect of
different instruction-generation mechanisms, such as peephole superoptimization, on
security. As time permits, the contractor will also study whether polyvariant
specialization enables (i) the creation of finer security-relevant models of program
behavior and (ii) more accurate or efficient enforcement of security policies. If earlier
tasks that are essential in completing a functional prototype require more effort, we
propose to shift this task to the option period, with the possible adjustments of lower
effort on either or both of the first two option-period tasks.

3

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #1 © GrammaTech, Inc. 2013

7. Produce deliverables and attend required meetings. The contractor will produce

technical documentation in the form of reports and a working software prototype. The
contractor will attend meetings requested by the program monitor.

3 Accomplishments during the reporting period
This report covers the first three months of the base contract period. Given the length of
calendar time that elapsed (1 year) between the completion of the previous contract funding
design and development of LACI and the start of the current contract, a substantial level of
effort was required to “dust off” the original prototype, ramp up management and planning
activities, and refresh the expertise of our development team on the capabilities of the
existing technology.

However, some initial technical progress has been made during this period as well. We:

• Reviewed the technical design for LACI and developed a plan for enhancing the
rewriting capabilities to be more robust in the face of disassembly ambiguities.

• Engaged in initial discussions with our colleagues at the University of Wisconsin (UW)
to assess progress on UW’s specialization slicing and partial evaluation technologies.

• Brought in-house the prototype for UW’s specialization slicing to connect with LACI
and evaluate its capabilities.

• Began converting LACI’s implementation to leverage the more robust rewriting
mechanism.

• Began adding support to LACI to handle 64-bit executables.

The following sections provide details on these accomplishments.

3.1 Making Rewriting More Robust
During the first phase of this project, we invested substantial effort in performing rewriting
correctly. Our approach was to focus on improving LACI’s IR recovery (provided by
CodeSurfer/SWYX) to eliminate disassembly errors. This enabled us sufficient robustness to
handle a substantial number of executables, including the entire coreutils utility suite.
However, it seems clear that IR recovery can never be fully general. Larger programs
inevitably contain some characteristic for which IR recovery fails, leading to LACI producing a
rewritten program that contains potentially fatal errors.

We decided to take a step back at the beginning of this second phase to re-assess our
approach. The bottom-line conclusion is that, while it’s certainly beneficial to have the IR
recovery possible, LACI’s rewriting process must account for the potential that the IR
recovery contains one or more disassembly errors.

The REINS[1] system introduced a new style of rewriting that allows for disassembly
ambiguity. Under a related DARPA-funded SBIR, “Automatic Detection and Patching of
Vulnerabilities in Embedded Systems” (W31P4Q-14-C-0083), GrammaTech is drawing
inspiration from the REINS approach to develop ADAPT, a verifiable rewriting platform. Like

4

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #1 © GrammaTech, Inc. 2013

REINS, ADAPT offers correct rewriting even when disassembly is ambiguous. Unlike REINS,
ADAPT goes further to ensure preservation of intended program semantics and incorporates
a verification framework to prove correctness of both the original semantics and added
security policies.

A key feature of both REINS and ADAPT is the way they structure the rewritten executable.
The original code and data are preserved verbatim in the rewritten executable. However,
only the data is actually used. The original code is retained as a conservative guard against
programs that store data intermixed with code (or even read their own code as data). The
rewritten code is added to the executable in a separate address range. The rewritten code is
structured such that data and code references all refer to the original code and data. Thus
the rewritten code “thinks” it is still executing in the context of the original executable. This
requires that function pointers, return addresses, and indirect jump targets be translated on-
the-fly at runtime from the original code space to the rewritten space.

This approach does incur overhead. The need to perform translation of code addresses
dynamically will necessarily add cost to each indirect control-flow transfer. However, this
cost comes with the promise of higher confidence in the robustness of the rewriting process.
For LACI, we believe this will provide a fair balance. And LACI’s optimizations should recover
the overhead incurred by optimizing latent inefficiencies present in the transformed
executable.

We began this quarter to convert LACI to leverage ADAPT’s new rewriting infrastructure. This
required some enhancement to the CodeSurfer/SWYX infrastructure in order to support the
conservative notion of disassembly that ADAPT’s rewriting requires. This component has
been completed. However, an outstanding task is to rework the reassembly and relinking
toolchain to support retaining the original code and data sections verbatim in the generated
executable. We expect this to be completed in the next reporting period.

3.2 Evaluation of UW Technology
During Phase 1, we reviewed UW’s executable slicing technology. At that time, we had
deemed the technology not yet ready to incorporate into LACI. During the first quarter of the
current contract, we reviewed the status of this technology with UW. In addition, we
discussed new work that UW is developing on partial evaluation and synthesizing instructions
from logical QFBV formulae. These latter two capabilities are still not ready to transition
(though, they may be more solid by the end of November); however, we have decided to
begin transitioning the executable slicing.

We’ve brought the code in house and have begun the process of connecting it to LACI. Some
holes will need to be filled in, however. The basic framework for using the technology on
LACI will be to construct an executable slice backward from all points in the subject program
that trigger externally visible output (whether that be text printed to the display, data
written to a file, or setting the program’s return status.) So it will be necessary to implement

5

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #1 © GrammaTech, Inc. 2013

an analysis that constructs that set of points. We have started on this, but have not
completed it yet. We plan to continue work on it in the next month.

3.3 Improved IR Recovery Infrastructure
A portion of the quarter was invested in improving the basic IR recovery capabilities that LACI
builds on. Because of the calendar delay in starting the second phase of the project, LACI had
suffered a level of “bit rot” due to changes in the underlying CodeSurfer/SWYX technology.
While much of the effort involved simple cleanup work, we also decided to tackle two
meatier technical problems: support for 64-bit code and more general-purpose handling of
jump tables.

The original LACI prototype supported only 32-bit software on the x86 platform. Given that
modern computer systems have by and large shifted to 64-bit software, we believe it’s
important that LACI transition to 64-bit software to remain relevant for modern systems. At
the time when the Phase 2 contract started, much of the CodeSurfer/SWYX infrastructure
underlying LACI had already been extended to support 64-bit software; however, some
components that LACI depends on were still 32-bit only. During the first quarter of this
project, we completed implementation of these remaining components. There is remaining
work to do to extend the LACI transforms to work for 64-bit software. We plan to tackle this
in the coming months.

The original handling of jump tables in CodeSurfer/SWYX was implemented using ad hoc
pattern matching. While effective for common patterns, the technique can be misled by
slightly abnormal code structure. A more principled approach is to symbolically evaluate the
code leading up to the use of a jump table to determine the location and bounds of the jump
table and, consequently, the set of targets reachable at the indirect control-flow transfer
instruction that uses it. This is natural to do with CodeSurfer/SWYX’s ability to represent the
semantic behavior of a sequence of instructions as a QFBV (Quantifier-Free Bit-Vector) logical
formula. We implemented this symbolic evaluation this month and initial testing
demonstrates that it functions quite well. This improvement will help LACI by providing more
robust understanding and handling of indirect transfer instructions.

4 Goals for the next reporting period

In the next reporting period we expect to complete the following:

• Complete conversion to the ADAPT rewriting technique.
• Implement the necessary connectivity to exercise UW’s specialization slicing code in

LACI’s context.
• Review UW’s progress on partial evaluation and instruction synthesis.
• Continue to improve support and robustness for both 32-bit and 64-bit software.

6

Data Subject to Restrictions on Cover Page.

Lean and Efficient Software: Whole-Program Optimization of Executables N00014-14-C-0037
Progress Report #1 © GrammaTech, Inc. 2013

5 Milestones
Interim results on multi-month tasks will be reported in the quarterly progress reports.

6 Issues requiring Government attention
None.

Reference List

 1. Wartell, R., Mohan, V., Hamlen, K., and Lin, Z., Securing untrusted code via compiler-
agnostic binary rewriting. In Proceedings of the 28th Annual Computer Security
Applications Conference (ACSAC). 2012. pp. 299-308.

Milestone
Planned
Start date

Planned Delivery/
Completion Date

Actual Delivery/ Completion
Date

Kickoff Mtg 9/4/2014 9/4/2014

Transition Specialization Slicing 7/2014 12/2014

Robustness & Reliability of IR &
Rewriting

7/2014 12/2014

First Quarterly Report 9/30/2014

Transition Partial Evaluation
and Instruction Synthesis

12/2014 5/2015

Second Quarterly Report 12/30/2014

Third Quarterly Report 3/30/2014

Evaluation 4/2015 6/2015

Final Report 6/30/2014

7

Data Subject to Restrictions on Cover Page.

	Project Summary Report #1
	(Report Period: 6/30/2014 to 9/30/2014)
	1 Financial Summary
	2 Project Overview
	3 Accomplishments during the reporting period
	3.1 Making Rewriting More Robust
	3.2 Evaluation of UW Technology
	3.3 Improved IR Recovery Infrastructure

	4 Goals for the next reporting period
	5 Milestones
	6 Issues requiring Government attention

